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Abstract
Model ensemble is a powerful tool to enhance
classification accuracy and robustness. One key
for ensemble is the model diversification. In this
paper, we propose a sequential iterative method
to optimize the cosine distance of output logits to
maximize model diversity with a cosine anneal-
ing schedule to stabalize convergence. We call
this strategy logit separation. This ensemble joint
training technique needs to be added to a base
method that acts on individual models. For this
paper, we choose TRADES (Zhang et al., 2019) as
our base model. We demonstrate that our method
boosts adversarial robustness with theoretical jus-
tification and empirical evidence.

1. Introduction
Deep Learning has shown its progress in the past ten years.
It has demonstrated its capability to solve various problems,
ranging from computer visions (He et al., 2016), natural
language processing (Vaswani et al., 2017), recommenda-
tion system (Covington et al., 2016), etc. However, since
Szegedy et al. first proposed the existence of Adversarial
Examples and the concept of Adversarial Attack (Szegedy
et al., 2013), a lot of experiments emerge and reinforce that
deep neural networks are not flawless. They are not actually
as robust as we have previously assumed.

Moreover, notice that adversarial attack does not merely ex-
ist within the digital world. They can actually have physical
consequences and bring thread to the security of machine
learning models (Kurakin et al., 2016) (Eykholt et al., 2018).

Though abundant adversarial training methods are proposed,
it remains an open problem to solve the problem of ad-
versarial attacks and improve adversarial robustness. As
pointed out in Athalye et al., many of the proposed ways to
defend against adversarial attacks are just some heuristics,
or tricks, that circumvent the adversarial attacks (Athalye
et al., 2018).

This paper focuses on using model ensemble to increase
model robustness. Tramer et al. is the first classical research
in this field (Tramèr et al., 2017). It utilizes the transfer-
ability of adversarial examples to prevent the models from

Figure 1. The left figure illustrates the training outcome if we con-
duct adversarial training separately. The green arrow represents the
true label, and the orange arrow represents the logits of adversarial
trained models. If they are perturbed to the same direction, their
ensemble vector (blue dotted) has similarly bad performance. On
the right, if models can give diversified output, their average is
closer to the true label.

circumventing the generation process of adversarial exam-
ples by smoothing the loss function near the input data point.
Though the models break down on following research by
the author’s own account (Tramèr et al., 2017), we believe
the underlying idea is sound and has potential.

Our approach is to diversify models in an ensemble by
enforcing an extra loss on the output logits. In particular,
we want to push the logits to be separate. By diversifying
the logits, we expect the output of models on adversarial
examples also to diversify. So the ensemble after averaging
would produce a better result (see Figure 1). Theoretically,
diversifying models doesn’t necessarily mean a compromise
of classification accuracy because it is believed that there
are multiple local minima that have similarly low natural
loss values (Carlini & Wagner, 2017). We are just forcing
them into distant and distinct local minima. In the following
sections, we will present our detailed proposed algorithms,
a more formal theoretical justification, and experimental
results.

In summary, our contributions are

• Algorithmic: We propose a loss function based on the
notion of logit separation, and use it to sequentially
train several models to achieve diversity in parameters.
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We then suggests preventing model to overfit on the
logit separation error by using a simulated annealing
scheduler.

• Theoretical: We give mathematical explanations on
the robustness performance boost resulting from sep-
aration of masked logit vector, and analyze how such
separation, expressed in our newly introduced loss term
of cosine angle, is guaranteed through sequential nega-
tive correlation learning in an iterative manner.

• Experimental: We conduct studies to experimentally
confirm several of our results in the theoretical section.
Furthermore, using TRADES as a baseline and adapt-
ing our code on it, we show that our method indeed
contributes to a boost in adversarial robustness through
experiments using l∞ AutoAttack (8/256) (Croce &
Hein, 2020) on CIFAR-10.

2. Algorithms
One of the precursors in robustness training (Madry et al.,
2017) talks about the folklore about the landscape of ad-
versarial examples. Starting at various randomized pertur-
bations from natural examples, they discovered that within
the l∞ norm ball, there exist many adversarial examples
with similar local maxima on loss value. Some of these
adversarial points even have negative dot products with the
original PGD direction (Madry et al., 2017).

In light of the above folklore, we believe that the ability
to distinguish all of such local maxima should be a char-
acteristic of an optimal learner. Unfortunately manually
identifying the complete set of adversarial examples is not
computationally feasible at this time. A single PGD learner,
absorbing adversarial examples only in a specific direction
(since it generates adversary only based on the current model
parameter), is likely to be biased. We seek to find a way to
capture the whole landscape of adversaries into our model.

Robustness training is essentially guaranteeing that adversar-
ial examples x̃, produced by adding a small ϵ perturbations
on natural examples x ∈ Rd, would not alter the adversarial
prediction h(x̃) by much from the original prediction h(x).
Traditional models cannot accommodate this adversary well
because they depend on a loss function L(f(x), y).

To avoid the biased pitfall of a single model, we design
an ensemble method of I models f1, f2, · · · , fI and force
them to each specialize on a different set of adversarial
directions. This is done primarily based on the notion of
logit separation. Then we combined these models using
basic ensemble method to derive a stronger classifier h =∑I

i=1 αifi.

Before giving the pseudo-code in Section 2.4, we first dis-
cuss the core techniques in the following subsections.

Figure 2. For the sake of illustration, only three models are pre-
sented. The green update is when the model is selected to be the
reference. When the model is the reference model (which gener-
ates adversarial examples), it only optimize for better classification
accuracy. Meanwhile, other models will be forced to have separate
logit to the reference as well as increase classification accuracy. In
real training, the loss and weight landscape are higher dimensional,
so they have more flexibility to separate than in this 2D setting.

2.1. Logits Separation

Previous robustness models that utilize logits mainly use it
as a measurement of the distance between adversarial predic-
tion and natural prediction that serves as a term to minimize
(Kannan et al., 2018). However, we notice that such logit
output could also be an indicator of diversity between mod-
els trained using the same technique. To this purpose, we
add a loss for the logits outputted by different models, in
the form of cosine distance, and use backpropagation to
diversify the model weights.

Intuitively, a set of models that yield larger distances be-
tween logits also indicate greater diversity, and thus would
perform better when ensembled together (see Figure 1). We
will theologically support this claim in Section 3.

The general idea for logit separation is to force diversity
when increasing classification accuracy. By forcing the
non-true logits (original logits excluding the true label y’s
component) to be different, we make the models themselves
to be diverse after back propagation (see Figure 2). In
particular, logit separation is forced on adversarial examples.
We want the potential incorrect predictions for adversarial
examples to be diverse. Hence, it has a better chance to
predict the correct label at the adversarial examples.

Here we introduce a new loss component that seek to en-
force diversity between models. The idea is to penalize the
cosine distance of logits. In particular, the loss component
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is framed as

m = 1− y = [1, · · · , 0, · · · , 1]T

where the 0 is the yth index

Lsim(fr(x̃), fo(x̃), y) = λ · (fr(x̃) ∗m)T (fo(x̃) ∗m)

||fr(x̃) ∗m|| · ||fo(x̃) ∗m||

where fr is the reference model and fo is one of the the other
models, or the current training model. As models take turns
to be the reference model, the logit distance component
is 1 when the reference model coincides with the current
training model, so we left out Lsim for the total loss in this
case.

We want to emphasize that our loss serves only as a sec-
ondary add-on component that need to ensure both that the
original loss function should have the highest priority and
that each model should not overfit on Lsim. This could ei-
ther be achieved using a small λ, or simulated annealing, as
discussed in section 2.3.

In this paper, we use TRADES (Zhang et al., 2019) as our
primary loss function, but other loss functions could also
suffice as long as they were trained based on adversarial
examples. In our case, the total loss function for function
fo can be written as

Lfo = E
(x,y)∼D

[ϕ(fo(x), y) + λ1 · ϕ(fo(x̃)fo(x))

+ λ2 · Lsim(fr(x̃), fo(x̃), y)]

where ϕ is a surrogate 0-1 loss function.

Figure 3. For each (X, y) pair, we assign the ”reference” to each of
the model in the ensemble. The adversarial example is generated by
the reference model. The reference model is updated by TRADE
loss while others are updated by both TRADE loss and separation
loss. This graph can be read with the pseudo-code in Section 2.4.

2.2. Ensemble sequential iterative methods

Our logit separation specification requires the usage of dif-
ferent models. Due to the transferable nature of adversarial
examples (Tramèr et al., 2017), we let models reinforce each
other by generating adversarial examples for one another.
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Figure 4. The trend of λ as step grows. λ first grows fast, signifying
an energy growth that pushes models to explore different directions
at first, and then gradually decreases and converges to 0, preventing
models oscillate around optima.

Specifically, on each batch of input data, each model in
the ensembles is selected to be the reference model in turn,
which is used to generate adversarial examples given the
input x. The reference model is updated by the TRADES
loss and others are updated by the Lfo defined before. See
Figure 3 for visual illustration.

2.3. Cosine Annealing Scheduler

Note that the diversity may be conflicted with the accuracy
since forcing the logits to be separate may not align with
optimizing the accuracy for classifications, but at the same
time, we want the model to explore the loss landscape and
not be trapped in close local minima. So, we utilize the trick
of cosine annealing to gradually decrease the weight for λ
so that the algorithm can explore the landscape at first and
then converge. This corresponds with our intuition that we
would first want each models to grow in different directions
by the influence of λ, and the gradually finds their respective
local minima of TRADES loss. See Figure 4 for the trend.

2.4. Pseudocode

See Algorithm 1.

2.5. Comparison With Previous Models

TRADES (Zhang et al., 2019) serves as the baseline for our
model. It is considered to be a classical adversarial training
method which gives a robust guarantee against adversarial
attacks. Some other state-of-the-art algorithms may have a
better benchmark, but that don’t necessarily indicate better
robustness. There are a lot of cases where the ”robustness”
turns out to be fake as new attack are proposed (Athalye
et al., 2018)(Engstrom et al., 2018). Still, at the time this
paper is written, TRADES performs decently well on the
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Algorithm 1 Logits Separation Joint Training
for i← 1 to I do ▷ I is the number of models

init fi
end for
shr← CosineAnnealingScheduler()
repeat

for (x, y) ∈ S do
for r ← 1 to I do ▷ fs be reference model in turn

λ← shr.step()
x̃← PGD(fr, x)
for o← 1 to I do

L← TRADES loss(x, x̃, y)
m← 1− y

L← L+ 1r ̸=oλ · (fr(x̃)∗m)T (fo(x̃)∗m)
∥fr(x̃)∗m∥·∥fo(x̃)∗m∥

Conduct gradient descent on loss L for fo
end for

end for
end for

until λ converges
return ensemble of models

adversarial benchmark (Croce et al., 2021). So, we believe
the idea of TRADES is solid and insightful. TRADES
adds a term for robustness regularization to the natural loss
during training, encouraging the models to learn the good
input while be aware of the adversarial ones. The loss for
TRADES can be expressed as

L = ϕ(f(X), Y ) + λϕ(f(X)f(X̃)

ALP (Kannan et al., 2018), or Adversarial Logit Pairing,
poses an alternative way to train a single model against
adversarial examples. It requires the logit on adversarial
examples to approach the logit on clean data. The loss used
in ALP can be expressed as

L = tϕ(f(X), Y ) + (1− t)ϕ(f(X̃, Y ) + λϕ′(f(X̃), f(X))

However, the robustness stated in the paper is proved to be
easily compromised (Engstrom et al., 2018). Nevertheless,
we believe that the logits of the model output is a good indi-
cator of the inherent property of the model. The reason it
fails may be that the model is not necessarily the expert on
adversarial examples, so the predictions on adversarial ex-
amples close to logits on clean samples doesn’t necessarily
lead to good predictions. We use logits in a totally opposite
way. Our approach is agnostic and doesn’t assume which
model in the ensemble will perform well on the incoming
sample. Instead, by forcing apart, we argue that the means
of the prediction is more accurate and by spreading the
weight, it is more likely one of the model in the ensemble
performs well.

ADP (Pang et al., 2019), or Adaptive Diversity Promoting,
uses the inner product between each pair of logits to denote

the diversity of the model ensemble. During training, it
adds the separation component to the loss to optimize both
accuracy and diversity. The proposed regularization term
is the weighted sum of the entropy of the ensemble and the
sum of the inner products from two different models’ logit
in the ensemble. The loss can be expressed as

L =
∑

ϕ(fk, X, y)

+ αH(F) + β log

∑
i ̸=j

(fi(X))T fj(X)


Though the author mentions the increasing robustness
against adversarial attacks, they didn’t add adversarial ex-
amples to the datasets and the AutoAttack (Croce & Hein,
2020) benchmark is unknown.

Although the metric we try to optimize is similar to what
proposed by ADP, our algorithms are remarkably different.
One significant difference is that instead of incorporating
the distance of each pair of models be the diversity loss, we
optimize the distance iteratively and sequentially (Section
2.2). In particular, when choosing one model as the refer-
ence, only the remaining models are forced to diversify. The
reason behinds this is to avoid local smoothness around the
data points, which result in producing weaker adversarial ex-
amples, rather than improving defense (Tramèr et al., 2017).
In addition, we introduce the trick of cosine annealing so
that the models can diverge at first and then converge to
respective optima.

3. Theoretical Explanations and Intuitions
In this section, we are to closely examine (1) the theoretical
foundations of our sequential learning method to minimize
the cosine loss term and (2) how that terms adds to the
model’s robustness.

3.1. Sequential training implementation guarantees

There are three major strategies for training ensembles, i.e.,
independent training, simultaneous training, and sequen-
tial training (Islam et al., 2003). In our algorithm we are
doing the sequential training, where individual neural net-
works take turns to be trained one after another. When the
other models are trained, weights in the reference model are
frozen.

The reason we select this training method is that it not only
targets minimizing accuracy and robust accuracy, but also
de-correlates the error of the model being trained from the
previously trained models so that their output logits are
as separated as possible. Moreover, since our goal is to
improve adversarial robustness, we avoid the pitfall of the
model circumventing the adversarial examples generated
by itself(Athalye et al., 2018). we let the reference model
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generate the adversarial examples for the other models. The
algorithmic details are shown in the pseudo-code in Section
2.4.

From a statistical point of view, by minimizing the cosine
angles among the non-maximal logits of the sub-models,
we are actually separating them by reducing correlations
among them, which is the central idea of this paper. Previ-
ous works with similar learning goal include (Liu & Yao,
1999) and (Rosen, 1996). However, their way of defining
ensemble complexity relies on the outdated assumption that
each sub-model is a weak learner itself. In our settings, they
are actually strong learners. Rather, we claim that when
minimizing the cosine angles, we optimize diversity and
uncorrelation in a more direct way.

From our definition of Lsim in Section 2.1, it is safe to as-
sume that, without the loss of generality, each component
output of fr(x̃) ∗m and fo(x̃) ∗m as a random variable of
zero expectation, since they represent the prediction confi-
dence at non-maximal class label. Then the logits become
random vectors. By connection between linear algebra and
probability theory, notice that the expectation of the product
of two zero-expectation random vectors satisfy:

1. bilinearity

E[(X + Y )Z] = E[XZ] + E[Y Z]

E[kXY ] = k · E[XY ]

2. symmetry

E[XY ] = E[Y X]

3. non-degenerativity

E[X2] = 0 ⇐⇒ X = 0 almost everywhere.

Thus it fulfills the definition of a inner product for two
random vectors. In addition, the length (norm) of random
vector is its standard deviation. Therefore we have that the
cosine of the angle between two vectors is their correlation.

cos (fr(x̃) ∗m, fo(x̃) ∗m)

=
(fr(x̃) ∗m)T (fo(x̃) ∗m)

||fr(x̃) ∗m|| · ||fo(x̃) ∗m||

=
Cov(fr(x̃) ∗m, fo(x̃) ∗m)

σ(fr(x̃) ∗m) · σ(fo(x̃) ∗m)

= Corr(fr(x̃) ∗m, fo(x̃) ∗m)

3.2. Model robustness improved by separation

Intuitively, if we force logit output from each individual sub-
model to be more separate, since the separation is measured

in the cosine angle of the non-maximal predictions in the
labels, our ensemble model becomes more diverse and thus
more robust. We express such intuition in mathematical
language, with inspiration from proof of the non-maximal
entropy loss model (Pang et al., 2018).

Theorem 1. Given n normalized unit vectors in Rn, say
v1, . . . , vn, and they form the columns of the matrix Mn.
Then the determinant

det(Mn)

is maximized if and only if the sum

n∑
i,j=1

i̸=j

(cos([vi, vj ]))
2

is minimized, where [vi, vj ] denotes the angle between vec-
tors vi and vj .

Proof. (based on geometric interpretation)
From basic linear algebra, the determinant of a n×n matrix
is the signed volume of the parallelepided spanned by the
column vectors of the matrix. The sign tells us whether
the column vectors form a left-handed or a right-handed
basis. And if they don’t form a basis, the n vectors are
linear dependent, so the determinant is zero. Since each
vector vi is a normalized unit vector, when the vectors form
an orthogonormal basis for Rn, meaning the square sum of
their cosine values reaches the minimum of 0, the signed
volume equals the maximum value, the product of the norm
of all vectors. In this case, 1.

Instead, when the determinant attains maximum, WLOG,
we consider the case when all other vectors remain un-
changed and modify v1. The volume is maximized if and
only if the distance of end point of v1 is as far from the
hyperplane spanned by {v2, . . . , vn} as possible. Since
||v1|| = 1, by Pythagorean theorem, the distance is maxi-
mized when the projection is minimized, which is equivalent
to that the square cosine value of the angle between v1 and
the hyperplane is minimized.

Then, we can see that our loss function design is in fact
equivalent to the ensemble diversity defined by (Pang et al.,
2019) as:

ED = det(M̃T
\yM̃\y)

where M̃\y = (F̃ 1
\y, . . . , F̃

K
\y), each column vector F̃ i

y is
the l-2 norm normalization of the non-maximal logit given
by the i-th submodel (Pang et al., 2019). The authors, in
another paper gives the theoretical guarantee that this model
could converge to the solution space (Pang et al., 2018).
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So in the decision space Aŷ of class ŷ, ∀i, j ̸= ŷ, zŷ ∈ Aŷ,
we have a unique a0i,j ∈ Ai,j such that

zŷ ∈ ∩
i,j ̸=ŷ

a0i,j = Q0

And the solution set to the problem is

argmin
zŷ

(
max

z∈Q0∩Āŷ

(f(z))ŷ

)
= Sŷ

where

ai,j = {(fr(x̃))i = (fo(x̃))j}
Ai,j = {(fr(x̃))i = (fo(x̃))j + c, c ∈ R}
a+i,j = {(fr(x̃))i ≥ (fo(x̃))j}

are the set of hyperplanes, affine planes, and half-spaces
divided by the hyperplanes, respectively. Our decision space
for class ŷ could be expressed by Aŷ

Aŷ = ∩
i ̸=ŷ

a+ŷ,i

The boundary of a decision space is Āŷ. And our targeted
solution space Sŷ is

Sŷ = ( ∩
i,j ̸=ŷ

ai,j) ∩Aŷ

This space is of dimension l − 1 embedded in the decision
space and is thus a lower-dimensional manifold in which our
output fr(x̃) and fo(x̃) should have l−1 equal non-maximal
components for arbitrary r and o.

We have proven that by forcing each sub-model to be sepa-
rated, we could achieve a space where the ensemble model
is more robust.

4. Experiments and Results
We adapted code from our chosen baseline model, TRADES,
to conduct experiments. Our modified code could be
found at https://github.com/CharlleChen/
fml-final-project. We train our model on CIFAR-
10 dataset, and using l∞ ball perturbation in our robust
training. We use I = 3 models in our ensemble. The
batch size is 128. β for TRADES regularization term
is 6 (default). The annealing schedule for λ (weight
for logit separation) has largest value 1 and smallest
value 0.01. The trained model weights can be found at
https://drive.google.com/drive/folders/
1duDKLafpdSINIg7Y_QpYeTXXSiBmXVBr?usp=
sharing.

Due to time and resource limits, we trained the ensemble
from scratch on RTX8000 (40G) for 10 epochs in 20 hours.
Note that this is way less than the benchmark given by

TRADES, which requires 100 epoch training (Zhang et al.,
2019). Hence, instead of comparing to the benchmark given
by the original paper, we compare our result with the base-
line (naive ensemble of three randomly initialized models)
trained with the same time and computation resources. It
turns out that our methods alternate the models in the ex-
pected way and it has performance gains.

4.1. Vector Angle

clean data PGD adversarial data
Baseline 0.43087897 0.4294527
Ours 0.4010905 0.3988733

Table 1. Mean cosine distance of logit outputted by model pairs.

Table 1 shows the cosine distance of models in the ensem-
ble. It is averaged through all test data and three pairs of
models from the ensemble. By our algorithms, we see that
the outputted logit on clean and adversarial examples both
decrease. This means that it fulfills our wish to diversify the
models in the ensemble.

4.2. Sub-model Performance

model 1 model 2 model 3
initial 73.50% 74.30% 73.90%Baseline

adversarial 36.90% 35.30% 36.40%
initial 72.80% 72.90% 73.00%Ours

adversarial 37.00% 37.50% 37.20%

Table 2. Accuracy of individual models of the ensemble on clean
and adversarial data (AutoAttack)

Table 2 shows the performance of individual models on ini-
tial and adversarial accuracy of AutoAttack. We can see that
the initial accuracy of baselines are generally higher than
our method, but our methods are better after the adversarial
attack. This means that our model is more robust.

4.3. Ensemble Result

Initial accuracy AutoAttack accuracy
Baseline 73.80% 37.50%
Ours 73.00% 38.6%

Table 3. Ensemble accuracy before and after AutoAttack.

Table 3 shows the overall accuracy of the ensemble model.
It has a consistent result with individual models: the initial
accuracy is higher for baseline but the AutoAttack accuracy
is higher for our method. This indicates that our model is
indeed valid.

We haven’t trained the model as long as the 100 epochs
stated in the TRADES paper, but we have reasons to be-
lieve that it can gains even more performance as the model

https://github.com/CharlleChen/fml-final-project
https://github.com/CharlleChen/fml-final-project
https://drive.google.com/drive/folders/1duDKLafpdSINIg7Y_QpYeTXXSiBmXVBr?usp=sharing
https://drive.google.com/drive/folders/1duDKLafpdSINIg7Y_QpYeTXXSiBmXVBr?usp=sharing
https://drive.google.com/drive/folders/1duDKLafpdSINIg7Y_QpYeTXXSiBmXVBr?usp=sharing
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converge. Also, we don’t have time to conduct repeated
research to demonstrate the statistical significance of the
improvement, but our empirical results fit our theoretical
expectations and has no obvious discrepancy. Further ex-
periments with different hyperparameters (different λ, β,
annealing schedule, etc) and ablation studies are required to
improve the understanding on this field.

5. Conclusion
Through experimentation and theoretical analysis, we
showed logical separation to be a valid and potentially very
useful technique for add-ons to improve robustness training.
Sequential iteration methods and cosine annealing sched-
ule are proven to be useful for the model to converge to
better optima. We showed the improved performance of
TRADES and gave theoretical or intuitive analysis on many
assumptions we made.

Further research on diversity training could also be made.
In this paper, we only take TRADES as an example and
uses CIFAR-10 as the only dataset. They are many potential
improvements such as generalizing our method based on
other primary models and training using different datasets.
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